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Abstract— In this paper, we study a general transactive
energy (TE) retailing problem in smart grids: a TE retailer (e.g.,
a utility company) publishes the energy price, which may vary
over time. TE customers arrive in an arbitrary manner and
may choose to either purchase a certain amount of energy based
on the posted price, or leave without buying. Typical examples
of such a setup include a transactive electric vehicle charging
platform, or a general market-based demand-side management
program, etc. We consider the setting where the customer arrival
information is unknown (i.e., without prediction), and focus
on maximizing the social welfare of the TE system through a
posted-price mechanism (PPM) that runs in an online fashion
with causal information only. We quantify the performance of
the proposed PPM in the competitive analysis framework, and
show that our proposed PPM is optimal in the sense that no
other online mechanisms can achieve a better competitive ratio.
We evaluate our theoretic results for the case of transactive
electric vehicle charging. Our extensive experimental results show
that the proposed PPM is competitive and robust against system
uncertainties, and outperforms several existing benchmarks.

Index Terms— Pricing, mechanism design, competitive analy-
sis, transactive energy, smart grid.

I. INTRODUCTION

OVER the past decade, a growing attention has been
devoted to the development of new economic models

and control strategies to ensure market efficiency and grid
reliability through the use of demand response techniques [1]
and distributed energy resources (DERs) [2]. This has led to
a focus on a new area of transactive energy (TE), defined by
the Gridwise Architecture Council as “a system of economic
and control mechanisms to balance the supply and demand
using value as the key operational parameter” [3]. According
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to National Institute of Standards and Technology (NIST) [4],
TE has a great potential for efficiency improvement through
market-based transactive exchange between energy suppliers
and energy consumers.

It is commonly believed that traditional flat-rate pricing
models must be updated with the TE framework since they
cannot handle the added complexity and cost to the energy
suppliers due to the increasing intermittency of DERs [3].
Pricing schemes such as time-of-use (TOU) and real-time
pricing (RTP) can better describe time-varying marginal costs
of energy supply [5]. However, these pricing schemes are
usually designed in heuristic ways [6], and thus it is dif-
ficult to achieve reliable and predictable performances in
highly-uncertain environments. Therefore, a TE system with
novel pricing schemes that can counteract the intermittency
of DERs is a necessary step to achieve a welfare-maximized
energy future (i.e., a win-win solution for both the supply and
consumption sides). On the other hand, energy consumers are
usually self-interested. Meanwhile, increasing availability of
evolving technologies such as batteries also bring more choices
and price transparency to energy consumers [4]. Therefore,
without an appropriate market design, consumers may not be
well-incentivized to behave in a desired collective manner.
Worse yet is that energy consumers may strategically influ-
ence the market, leading to a poor system-wide performance.
Towards this end, designing market mechanisms that can
guarantee a competitive and robust system-wide performance
under uncertain and strategic environments plays a pivotal role
in the future of TE.

Motivated by these considerations, various market-based
demand-side management (DSM) problems have been stud-
ied, e.g., pricing mechanism for electric vehicle (EV) charg-
ing [7], market-based coordination mechanism to manage
thermalstatically-controlled loads (TCLs, e.g., air conditioners
and heaters) in buildings [8], [9], and demand bidding and
auction [10], [11]. However, all the above works have focused
on market design in an offline and static setting, in which all
the energy suppliers and energy customers have to participate
in the mechanism at the beginning of the time horizon.
In practice, customers often arrive sequentially in an online
and dynamic manner, and are uncertain in multiple dimensions
(e.g., arrival times, durations, power rates, energy demand,
etc.). The uncertainty of customers is further complicated
when they are equipped with DERs such as wind, solar and
energy storage devices, which are key elements in the concept
of TE. Therefore, a static and synchronized setup might not be
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amenable for a highly-uncertain and dynamic TE framework
in future smart grid.

To address this concern, we borrow ideas from online
mechanism design in multi-agent systems [12], [13] and
economics [14], and aim to study the above market-based
DSM problems in a unified framework of posted-price TE
retailing.1 Specifically, we consider a TE retailer (e.g., a utility
company, an aggregator of EVs/TCLs, etc.) is selling energy
to customers who arrive in a sequential and online manner.
Upon the arrival of each customer (where ties are broken
arbitrarily), the TE retailer publishes an energy price, which
may vary over time. Customers can choose to either purchase
a certain amount of energy based on the posted price, or leave
without purchasing anything. In this context, customers are
faced with take-it-or-leave-it offers, and therefore strategic
behaviors naturally vanish [17], [18]. Meanwhile, such a
sequential posted-price setting is also aligned with the trend
of TE with a more transparent, customer-centric and dynamic
exchange between energy suppliers and consumers [3]. For
example, in market-based EV charging platforms, an EV
can accept the posted price from one platform, or leave
for alternatives. In our posted-price TE retailing framework,
we do not assume any knowledge of future arrival informa-
tion, i.e., arbitrary arrivals without prediction. Under such
a highly-uncertain setting, we are interested in designing
a posted-price mechanism (PPM) to achieve the following
objectives: i) individual rationality, i.e., each customer suffers
no loss from participating in the mechanism; ii) incentive
compatibility, i.e., each customer can achieve the best outcome
(e.g., the maximized utility) if she follows her true preference,
regardless of actions taken by other customers; and iii) tight
competitive ratio, i.e., the ratio between the social welfare
achieved by the proposed PPM and its offline counterpart
(assuming full knowledge of future information), is as close
to 1 as possible.

We note that the above posted-price TE retailing framework
is not entirely new in the smart grid literature. A similar
setup has been studied in other settings such as RTP-based
load control [19]–[21], auction-based real-time demand-side
flexibility management [22], and auction-based online EV
charging [23]–[26], etc. However, the posted-price retailing
framework differs from all these existing works in the follow-
ing features. First, the prices in our TE retailing framework are
updated for each individual customer (i.e., customer-driven),
this differs from traditional RTP schemes which broadcast
the prices for all the customers periodically (e.g., every one
hour). Second, our proposed PPM does not require customers
to reveal their private information (e.g., valuation). Instead,
they make their own decisions based on the posted prices.
This differs from existing auction-based market mechanisms
such as [22]–[26], where customers need to reveal their private
information to the retailer in order to maximize the social
welfare. Eliminating the revelation of private information
not only leads to a privacy-preserving mechanism, but also

1Posted-price, auction, and bargaining are considered the three most
commonly-used selling methods. We refer to [15] and [16] for detailed
discussions.

reduces the communication overhead between TE retailer and
customers. Therefore, our proposed PPM is very suitable for
a distributed implementation in large-scale TE systems.2

Our Contributions: We propose an optimal PPM for TE
retailing without prediction. The proposed PPM is optimal in
the sense that no other online mechanisms can achieve a better
competitive ratio, and thus no other online mechanisms can
achieve a better performance in expectation. To the best of our
knowledge, the proposed PPM is the first online mechanism
in TE retailing to achieve individual rationality, incentive
compatibility3 and optimal competitive ratio simultaneously.
Specifically, the key to our online mechanism design is the
proof of existence and uniqueness of optimal pricing func-
tions that satisfy a group of first-order ordinary differential
equations (ODE) with boundary conditions. We validate our
design via case studies of market-based online EV charging.
Extensive numerical results show that our proposed PPM
is competitive and robust against system uncertainties, and
outperforms several existing benchmarks.

The rest of this paper is organized as follows. We introduce
the problem formulation, design objectives and assumptions
in Section II. In Section III, we present our major results
regarding the optimal competitive ratio and optimal pricing
functions. We perform extensive experimental simulations in
Section IV and conclude this paper in Section V.

II. PROBLEM FORMULATION

In this section, we first present the problem formulations
in the offline setting and online posted-price setting, and
then describe the objectives and assumptions of our online
mechanism design.

A. Problem Formulation in Offline Setting

We consider a general TE retailing problem as follows:
a TE retailer is selling TE to customers who arrive in a
sequential manner with a certain demand. We consider a
group of customers N = {1, · · · , N} over a slotted time
horizon T = {1, 2, . . . , T} with slot length ΔT . Each cus-
tomer is represented by a type vector θn = (rn, vn), where
rn = {rt

n}∀t∈Tn denotes the power demand profile during
the consumption interval Tn and vn denotes the monetary
valuation, i.e., the maximum money customer n is willing to
pay for consuming the power demand rn over interval Tn.
Note that if we denote Tn by Tn = {tan, · · · , tdn}, then tan and
tdn can be interpreted as the arrival and departure of customer
n, respectively (e.g., an EV charging duration). We assume that
rt
n ≥ 0 always hold during the consumption interval Tn (i.e.,

negative demand is not allowed in our TE retailing system).
Meanwhile, for notational convenience, we denote the demand
profile of customer n over the entire horizon by {r̂t

n}∀t∈T ,
where r̂t

n is given by

r̂t
n =

{
rt
n if t ∈ Tn,

0 if t ∈ T \Tn.
(1)

2For instance, it is possible to implement a distributed and
privacy-preserving transaction system based on our proposed PPM via
blockchain [27].

3Posted-pricing is inherently incentive compatible [17], [18] and [28].
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In the following we may use {r̂t
n}∀t∈T and {rt

n}∀t∈Tn inter-
changeably.

For each time slot t ∈ T , we consider the base load bt is
given and the TE retailer has a limited capacity of ct. Here we
allow ct to be time-dependent to make it more general. When
all the future arrival information is known, the offline social
welfare maximization problem can be formulated as follows:

max
x,y

∑
n∈N

vnxn −
( ∑

t∈T
ft(yt) −

∑
t∈T

ft(bt)
)
ΔT (2a)

s.t. yt = bt +
∑
n∈N

r̂t
nxn, ∀t ∈ T , (2b)

bt ≤ yt ≤ ct, t ∈ T , (2c)

xn ∈ {0, 1}, ∀n ∈ N , (2d)

where the binary variable xn ∈ {0, 1} denotes the status
of customer n, the auxiliary variable yt denotes the total
power consumption, and ft(·) denotes the supply cost of the
TE retailer. Specifically, xn = 1 denotes that customer n
purchases the demand and xn = 0 otherwise. Following the
convention in the literature (e.g., [1], [19], [29]), the cost
function ft(·) is assumed to take the following quadratic form

ft(y) = at,2y
2 + at,1y + at,0, (unit: $/hour). (3)

When the TE retailer is a utility company, then ft(y) repre-
sents the fuel cost of electricity generation per hour. In the
following, we will also frequently use the derivative of
ft(y), i.e., the marginal cost function f ′

t(y) = 2at,2y + at,1

(unit: $/kWh).
Problem (2) aims at optimizing the selection of customers

(i.e., whom to sell/serve) such that the social welfare of the
entire TE system can be maximized.4 For example, for those
customers who are in an urgent demand (e.g., an electric taxi
who wants to be recharged as fast as possible to return to
work), their valuations tend to be high and thus will have
a higher chance to be selected, and vice versa. Note that
in our formulated TE retailing problem, the demand vector
rn = {rt

n}t∈Tn or r̂n = {r̂t
n}∀t∈T is given by each customer

n ∈ N , and thus rn or r̂n is fixed and not a decision
variable in Problem (2). Therefore, we focus on TE customers
with flexibility in consumption durations but without elasticity
in power demand, e.g., EV charging control with flexible
charging durations and given charging profiles.

B. Posted-Price Retailing in Online Setting

Directly solving Problem (2) is possible, provided that all
the future information is given. However, we are interested in a
more practical scenario when customers arrive in an online and
dynamic fashion and there is no predictability in the sequence
of customer arrivals as well as their demand information.
Meanwhile, we consider the decisions of whether to make
a purchase or not are made by the customers in a distributed
manner so as to be more scalable and privacy-preserving.

4It is worth pointing out that social welfare maximization is not the only
design objective of interest. For example, profit-maximization is of interest if
the TE retailer is profit-oriented, e.g., an aggregator of EVs. Meanwhile, other
design objectives such as load shifting and/or peak-shaving are also common
in literature, e.g., [19] and [20].

Towards this end, we reformulate the above offline social
welfare maximization problem into an online posted-price
retailing problem as follows. We consider a group of N =
{1, · · · , N} customers whose arrival sequences {tan}∀n are,
without loss of generality, in a non-descending order, i.e., 1 ≤
ta1 ≤ ta2 ≤ · · · ≤ taN ≤ T . At each round when there is
an arrival of customer n ∈ {1, 2, · · · , N}, the TE retailer
will offer him/her a price profile for the remaining horizon
of interest T (n) � {tan, · · · , T }. Customer n may either leave
without purchasing anything, or purchase the required power
profile {rt

n}∀t∈Tn by paying the TE retailer based on the
current price. The same process will repeat upon the arrival
of customer n+1. Our target is to design a sequence of price
profiles at each round so that the social welfare of the whole
TE system can be as close to the offline social welfare as
possible. Below we present the design details of our PPM.

Let us denote the initial price by {λ(0)
t }∀t∈T , namely,

the posted price before processing5 the first customer, and
denote the posted price by {λ(n)

t }∀t∈T after processing cus-
tomer n, where n ∈ {1, · · · , N}. Following this notation, upon
the arrival of customer n, the posted price for the remaining
horizon T (n) can be denoted by {λ(n−1)

t }∀t∈T (n) . If customer
n decides to purchase the power demand, she will pay

πn =
∑
t∈Tn

λ
(n−1)
t rt

nΔT (4)

to the TE retailer. We assume that customer n makes her own
decision based on the following criteria:

xn =

{
1 if vn − πn ≥ 0,

0 if vn − πn < 0.
(5)

Therefore, we can quantify the utility of customer n by

Un = (vn − πn)xn. (6)

The above decision-making model follows the conventional
individual rationality principle in game theoretic litera-
ture [12], [28], namely, a customer will make a purchase only
if her utility is non-negative.

Let us denote the total power consumption by {y(n)
t }∀t∈T

after processing customer n. For notational convenience, let
us define y

(0)
t � bt, ∀t ∈ T . Hence, we have

y
(n)
t = y

(n−1)
t + rt

nxn, ∀t ∈ Tn. (7)

Intuitively, we have y
(n)
t = y

(n−1)
t if customer n does not

make any purchase, namely xn = 0. Meanwhile, bt ≤ y
(n)
t ≤

ct always holds, ∀t ∈ T , n ∈ N . After processing all the
customers, the utility of the TE retailer is given by

Ur =
∑
n∈N

πnxn −
( ∑

t∈T
ft

(
y
(N)
t

)
−

∑
t∈T

ft(bt)
)
ΔT , (8)

5By processing, we mean the procedures of posting the price and then
obtaining the decision results from customers. Note that this is different
from serving energy to customers. In particular, customers can be served
concurrently (e.g., multiple EVs are being charged simultaneously), but must
be processed sequentially based on their arrival orders (where ties are broken
arbitrarily). Meanwhile, it is possible that multiple customers are admitted in
a single time slot.
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where {y(N)
t }∀t denotes the final total power consumption

profile. Based on Eq. (6) and Eq. (8), summing over the
utilities of all the customers and the TE retailer leads to the
social welfare of the whole TE system, which is denoted by
Wppm as follows:

Wppm =
∑
n∈N

vnxn −
( ∑

t∈T
ft

(
y
(N)
t

)
−

∑
t∈T

ft(bt)
)
ΔT . (9)

Note that the payment terms cancel out in Wppm. Meanwhile,
Wppm is in the same form as the objective of Problem (2)
except that their final total power consumption profiles are
calculated in different ways.

C. Objectives: Competitive Pricing Function Design

In the above posted-price retailing processes, any two dif-
ferent sequences of the posted prices {λ(n)

t }∀n,t will lead to a
different welfare performance of the TE system. When there
is no future information, our idea is to design the price λ

(n)
t

as a function of the current total power consumption y
(n)
t , i.e.,

λ
(n)
t � Φt

(
y
(n)
t

)
, ∀t, (10)

where Φt is referred to as the pricing function and Φ = {Φt}∀t

is called a pricing scheme hereinafter. We note that following
the above definition, the initial price λ

(0)
t , namely the price

posted for the first customer, is given by λ
(0)
t = Φt(y

(0)
t ) =

Φt(bt), ∀t. Meanwhile, since the current power consumption
is causal information, our design of {Φt}∀t is independent
of future information and enables an online implementation.
The detailed procedure of our proposed PPM is summarized
in Algorithm 1.

Algorithm 1 PPM With Pricing Scheme Φ (PPMΦ)

1: Initialization: y
(0)
t = bt, ∀t.

2: while a new customer n arrives do
3: Customer n calculates πn by Eq. (4).
4: if vn ≥ πn and y

(n−1)
t + rt

n ≤ ct, ∀t ∈ Tn, then
5: Customer n purchases the power demand rn and

pays πn to the TE retailer (i.e., xn = 1).
6: else
7: Customer n leaves without purchasing anything

(i.e., xn = 0).
8: end if
9: Update the total power consumption by Eq. (7).

10: Update the current power price by Eq. (10).
11: end while

Competitive Analysis: Recall that our target is to make
Wppm as close to its offline counterpart as possible. For online
settings without future information, the performance of PPMΦ

can be measured via the competitive analysis framework [30].
Let Wopt denote the offline optimal objective value of Prob-
lem (2). We say PPMΦ is α-competitive if there exists a
constant α such that

Wppm ≥ 1
α

Wopt

holds for all possible arrival instances, meaning that PPMΦ

achieves at least 1/α of the offline optimal social welfare when
there is no future information. Note that α is at least 1, and
the closer to 1 the better. Meanwhile, we say the competitive
ratio α of PPMΦ is optimal if no other online algorithms can
outperform PPMΦ with a smaller competitive ratio of α − ε,
∀ε > 0. If the competitive ratio of PPMΦ is optimal, we denote
it by α∗.

The main objective of this paper is to strategically design
a pricing scheme Φ = {Φt}∀t so that PPMΦ can achieve a
competitive performance. In particular, we will characterize
under what conditions PPMΦ can achieve a bounded com-
petitive ratio, and whether the bounded competitive ratio is
optimal or not.

D. Assumption of VERs and Setup

To help our pricing function design, in this subsection we
make a few definitions and assumptions. For each customer
n, let us define the valuation-to-energy ratio (VER) by

ξn � vn∑
t∈Tn

rt
nΔT

, ∀n ∈ N , (11)

where ξn has the same unit as the energy price, i.e., $/kWh.
Therefore, we can interpret ξn as the maximum average energy
price that customer n is willing to accept.

Based on the above definitions, we make the following
assumption throughout the paper.

Assumption 1 (Upper Bound): The VERs of all the cus-
tomers are upper bounded, namely,

ξn ≤ p, ∀n ∈ N , (12)

where p is referred to as the upper bound hereinafter.
Since the demand profiles {rt

n}∀t,n are all finite, Assump-
tion 1 basically states that all the customers are rational and
will not have exceptionally-high valuations, namely, the valu-
ations of all the customers are upper bounded. We emphasize
that Assumption 1 is a mild assumption that naturally holds
in practice. It should be note that p not only provides a
natural upper bound for the maximum average energy prices
that customers are willing to accept, but also indicates the
uncertainty level of VERs. In particular, a larger p indicates
that the uncertainty of VERs is higher since ξn is totally
random in [0, p], ∀n ∈ N . In the extreme case when p is
arbitrarily large, the customers are arbitrarily heterogeneous in
the sense that the next customer may accept an extremely-high
energy price.

Setup: Based on Assumption 1, we define all the informa-
tion known by the TE retailer by S as follows:

S �
{{

bt, ct, ft

}
∀t

, p
}

, (13)

which includes the base load profile {bt}∀t, the capacity
limit {ct}∀t, the cost coefficients in function {ft}∀t, and the
upper bound p. In the following, S is referred to as a setup.
Other than the setup S, we consider all other information is
unknown. Therefore, for a given setup S, the competitive ratio
of PPMΦ can only depend on S, and must be independent of
other factors such as the number of customers, the valuation
and the demand of customers, etc.
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III. OPTIMAL DESIGN

In this section, we present the major results of this paper.
We start by introducing two heuristic pricing schemes, and
then describe the principles of our optimal pricing function
design. After that, we characterize the optimal competitive
ratio α∗(S) and present the optimal pricing scheme Φ =
{Φ∗

t }∀t.

A. Two Heuristic Pricing Schemes

To reveal the intuition of our optimal pricing function
design, in this subsection we introduce two heuristic pricing
schemes that are designed purely based on the initial marginal
cost f ′

t(bt), the maximum marginal cost f ′
t(ct), and the upper

bound p. For notational convenience, let us define pb
t and pc

t

as follows:

pb
t � f ′

t(bt), pc
t � f ′

t(ct), ∀t ∈ T . (14)

For simplicity of exposition, in the following we assume that
p > maxt{pc

t} always holds,6 namely, the upper bound p
is larger than the maximum marginal cost of all time slots.
In particular, we define the complete set of p’s by P as follows:

p ∈ P �
(
max

t
{pc

t}, +∞
)
. (15)

Based on pb
t , pc

t , and p, we give the following two pricing
schemes:

• Linear. For each time slot t ∈ T , the pricing function of
this scheme is given by

Φlinear
t (y) =

p − pb
t

ct − bt
(y − bt) + pb

t , y ∈ [bt, ct], (16)

which is linear w.r.t. the total power consumption by
directly connecting pb

t and p. The implementation of
PPMΦ with this pricing scheme will be referred to as
Linear hereinafter.

• Greedy. For each time slot t ∈ T , the pricing function
of this scheme is given by

Φgreedy
t (y) = f ′

t(y), y ∈ [bt, ct], (17)

which simply uses the marginal cost function as the
pricing function when y ∈ [bt, ct]. This is a greedy pricing
scheme and the available capacity will be sold without
any reservation for possible future high-VER customers.
The implementation of PPMΦ with this pricing scheme
will be referred to as Greedy hereinafter.

Fig. 1 illustrates Φlinear
t (y), Φgreedy

t (y), and other two pricing
functions Φ̂t(y) and Φt(y). It can be seen that Greedy always
has a cheaper selling price than Linear except the initial price
pb

t . In particular, Greedy does not depend on p, meaning that
Greedy always depletes the available capacity myopically,
regardless of the valuations of future customers. In contrast,
Linear sets the price based on p in a linear manner, and
thus Linear attempts to reserve some capacity for future
arrivals with high-VERs. In the following, we will say pricing

6It is possible to relax this assumption, which however will complicate the
exposition. Please refer to [31] for a detailed discussion of how to extend our
current design without this assumption.

Fig. 1. Illustration of different pricing functions with dividing thresholds.

scheme “A” is more aggressive than pricing scheme “B” if
“A” always sets the price cheaper than “B” for the same
power consumption level. In this regard, Greedy is more
aggressive than Linear, and the aggressiveness of the four
pricing strategies in Fig. 1 in ascending order is given as
follows: Φlinear

t (y), Φ̂t(y), Φt(y), Φgreedy
t (y). Intuitively, a less

aggressive pricing scheme tends to believe the usefulness of
p and will try to reserve some available capacity for potential
future high-VER customers. In economics, an aggressive pric-
ing strategy7 is also known as a predatory pricing strategy [14].

Dividing Threshold: Given a pricing function Φt, we define
its dividing threshold as the power consumption level ut so
that Φt(ut) = pc

t , as shown in Fig. 1. Based on this definition,
the dividing threshold of Φlinear

t (y), denoted by ulin
t , is given

by

ulin
t � bt +

pc
t − pb

t

p − pb
t

· (ct − bt), (18)

namely, Φlinear
t (ulin

t ) = pc
t , ∀t ∈ T . Similarly, the dividing

threshold of Φgreedy
t (y) is ct since Φgreedy

t (ct) = pc
t , ∀t ∈ T .

Intuitively, for any ut ∈ (bt, ct), the whole interval [bt, ct]
is divided into two segments by ut, i.e., [bt, ut] and [ut, ct].
We name these two stages as the high-risk segment and low-
risk segment, and describe some key features of them as
follows:

• High-Risk Segment: [bt, ut]. At this segment, the VER
of any served customer may be smaller than the final
marginal cost. Therefore, the pricing function design
at this segment is risky in the sense that a customer
may appear to have a reasonably-high VER now, but
ultimately lead to negative social welfare contribution in
the end. Thus, we refer to this segment as the high-risk
segment. As illustrated by Φt(y) in Fig. 1, a smaller
dividing threshold ut indicates a shorter high-risk seg-
ment, and the pricing function tends to be less aggressive,
and vice versa.

7Usually, an aggressive pricing strategy undergoes a short-term pain for
long-term gain by deliberately increasing the market share, and is considered
anti-competitive in many jurisdictions [14]. However, since we consider only
one TE retailer in our setting, the competition of market share among different
TE retailers is beyond the scope of this paper.
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• Low-Risk Segment: [ut, ct]. At this segment, all the served
customers will lead to positive social welfare contribution
since their VERs are always larger than or equal to the
maximum marginal cost pc

t . Therefore, we refer to this
stage as the low-risk segment.

The above descriptions suggest that the pricing function
design for the high-risk segment should be inherently different
from the low-risk segment. From this perspective, Linear fails
to distinguish the pricing function design between these two
segments. For example, when p is very large, a simple linear
pricing function will set the prices too high at the high-risk
segment (i.e., overreact to p), leading to excessive refusal of
customers. In comparison, Greedy completely overlooks the
usage of p. As a consequence, Greedy will fail to reserve
some capacity for potential high-VER customers in the future.
In other words, Linear is over optimistic for the usefulness of
p while Greedy is over pessimistic. For both pricing schemes,
we can expect that their performances are sensitive towards the
changes of p.

B. Conditions for PPMΦ Being Competitive

Motivated by the discussions of the two heuristic pricing
schemes in the previous subsection, we aim at designing a
pricing scheme that takes into account the useful information
of p, but will not overreact to p to avoid excessive cus-
tomer refusal at the high-risk segment. In particular, given
a setup S, we are interested in understanding whether the
curvature of Φt(y) can be designed in a strategic way so as
to achieve a ‘smart’ balance between Linear and Greedy,
namely, a balance between optimism and pessimism. This
subsections shows that such nonlinear pricing functions indeed
exist, provided that they satisfy a certain conditions.

Below we first give Theorem 1 to summarize the sufficient
conditions for Φ = {Φt(y)}∀t∈T to guarantee that PPMΦ has
a bounded competitive ratio.

Theorem 1 (Sufficiency): Given a setup S with p ∈ P ,
PPMΦ is maxt{αt}-competitive and incentive compatible if
for each t ∈ T , Φt(y) satisfies the following conditions:

• C1): Φt(bt) = pb
t and Φt(ct) ≥ p.

• C2): Φt(y) is strictly increasing in y ∈ [bt, ct].
• C3): Φt(y) satisfies the following two ODEs with dividing

threshold ut ∈ (bt, ct):

Φ′
t(y) =

⎧⎪⎪⎨
⎪⎪⎩

αt ·
Φt(y) − f ′

t(y)
f ′−1

t (Φt(y)) − bt

if y ∈ [bt, ut],

αt ·
Φt(y) − f ′

t(y)
ct − bt

if y ∈ [ut, ct],
(19)

where f ′−1
t denotes the inverse of f ′

t , and αt ≥ 1 is a
competitive ratio parameter that depends on S only.

We also give Theorem 2 below to show that the existence of
pricing schemes to satisfy the three conditions in Theorem 1
is necessary for the existence of any general α-competitive
online algorithm.

Theorem 2 (Necessity): Given a setup S with p ∈ P ,
if there exists an α-competitive online algorithm, then for each
t ∈ T , there must exist a pricing function Φt(y) that satisfies

C1, C2, and C3 with some dividing threshold ut ∈ (bt, ct) and
competitive ratio parameter αt ≤ α.

Proof: We note that the three sufficient conditions in
Theorem 1 are derived based on the online primal-dual analy-
sis [32] of Problem (2), and the proof of the necessity in
Theorem 2 is based on constructing a special arrival instance
such that any α-competitive online algorithm must satisfy the
above three conditions in order to achieve at least 1/α of the
offline optimal social welfare. The detailed proofs of the above
two theorems are given in [31].

Rationality and Intuition: The three conditions in Theorem 1
are critical in our following pricing function design. Below we
briefly explain the rationality and intuition behind Theorem 1
and Theorem 2.

• Rationality of Φt(bt) = pb
t in C1. We can prove that if

Φt(bt) = pb
t does not hold for all t ∈ T , then it is

always possible to construct an arrival instance such that
Wopt �= 0 but Wppm = 0, leading to an unbounded
competitive ratio. For example, if Φt(bt) > pb

t holds for
t = t0, then we can construct a sequence of customers
who intend to purchase some power for time slot t0
only with VERs drawn from (pb

t0 , Φt0(bt0)). For such an
arrival instance, no customer will make a purchase under
PPMΦ (i.e., Wppm = 0) while Wopt �= 0. Obviously, all
the four pricing functions illustrated in Fig. 1 satisfy this
necessary condition.

• Intuition of C2 and C3. The monotonicity condition C2
is because a higher power consumption indicates a higher
supply cost, and consequently leads to a higher selling
price. The ODEs in Eq. (19) are derived based on a
principled primal-dual analysis of Problem (2). Note that
for both ODEs in Eq. (19), the right-hand-side consists of
Φt(y)−f ′

t(y), which is the difference between the selling
price Φt(y) and the marginal cost f ′

t(y). Therefore, C3
provides an analytical way to design the curvatures of
{Φt(y)}∀t∈T so that a smart balance between Linear and
Greedy can be achieved. Moreover, Eq. (19) explicitly
shows that the curvature of Φt is directly related to the
dividing threshold ut and the competitive ratio parameter
αt, which follows our intuition.

Before leaving this subsection, it is worth pointing out
that Theorem 2 does not necessarily require that all α-
competitive online algorithms must be PPMs (online algo-
rithms/mechanisms have various types and structures). Instead,
Theorem 2 argues that if there exists any general α-competitive
online algorithm/mechanism for a given setup S, then there
must exist a pricing function Φt(y) for each time slot t ∈ T
that satisfies the three conditions in Theorem 1. In the next
subsection we show that the necessity of Theorem 2 plays a
critical role in our optimal pricing function design.

C. Existence, Uniqueness, and Optimality

Below in Theorem 3, we show the major results of this
paper, namely, the existence of a unique dividing threshold
u∗

t ∈ (bt, ct) for each t ∈ T such that the optimal com-
petitive ratio achievable by all online mechanisms can be
characterized.
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Theorem 3 (Existence, Uniqueness, and Optimality):
Given a setup S with p ∈ P , for each t ∈ T , there exists a
unique pricing function Φ∗

t (y) that satisfies

• OC1): Φ∗
t (bt) = pb

t and Φ∗
t (ct) = p.

• OC2): Φ∗
t (y) is strictly increasing in y ∈ [bt, ct].

• OC3): Φ∗
t (y) satisfies the ODEs in Eq. (19) with u = u∗

t

and αt = Γt(u∗
t ), where Γt(u∗

t ) is a function of u∗
t ∈

(bt, ct) given as follows:

Γt(u∗
t )=

⎧⎪⎪⎨
⎪⎪⎩

(ct − bt)2

(u∗
t − bt)(ct − u∗

t )
if u∗

t ∈
(

bt,
bt + ct

2

)
,

4 if u∗
t ∈

[
bt + ct

2
, ct

)
,

(20)

and the dividing threshold u∗
t ∈ (bt, ct) is the unique root

to the following equation

ct − u∗
t − ct−bt

Γt(u∗
t )

exp
(

u∗
t

ct−bt
· Γt(u∗

t )
) =

f ′−1
t (p) − ct − ct−bt

Γt(u∗
t )

exp
(

ct

ct−bt
· Γt(u∗

t )
) . (21)

Meanwhile, the implementation of PPMΦ with Φ =
{Φ∗

t (y)}∀t achieves an optimal competitive ratio of α∗(S),
where α∗(S) is given by

α∗(S) = max
t∈T

{Γt(u∗
t )} . (22)

Proof: The proof of the above existence, uniqueness, and
optimality is non-trivial, and the details are given in [31]. Our
proof heavily relies on the uniqueness and existence properties
of first-order ODEs with boundary conditions [33], [34]. Note
that the three conditions OC1-OC3 in Theorem 3 correspond
to the three conditions C1-C3 in Theorem 1, respectively,
where ‘OC’ is short for ‘optimal condition’.

Theorem 3 shows that there exists an optimal pricing
scheme Φ = {Φ∗

t (y)}∀t, with optimal dividing thresholds
{u∗

t}∀t, such that PPMΦ achieves the optimal competitive ratio
of α∗(S), namely, no other online mechanisms can achieve a
better competitive ratio than PPMΦ if Φ = {Φ∗

t }∀t. Note that
both {u∗

t }∀t and {Γt(·)}∀t depend on S only, and thus the
optimal competitive ratio also depends on S only. We note
that the optimality in Theorem 3 is based on the necessity in
Theorem 2. Specifically, given a setup S and for any t ∈ T ,
we can prove that when αt < α∗(S), there exists no such a
strictly-increasing pricing function that satisfies the two ODEs
in Eq. (19) with the two boundary conditions given by C1,
and thus it is impossible to have an online algorithm that is
(α∗(S) − ε)-competitive, ∀ε > 0.

Based on the above analysis, the following two corollaries
directly follow Theorem 3.

Corollary 4: For any ε > 0, there exists no (α∗(S) − ε)-
competitive online algorithms/mechanisms.

Corollary 5: For any ε ≥ 0, there exists a pricing scheme
Φ = {Φt}∀t so that PPMΦ is (α∗(S) + ε)-competitive and
incentive compatible.

Proof: Note that Corollary 5 guarantees the existence
of competitive and incentive compatible pricing schemes for
PPMΦ, while Corollary 4 holds for general online algo-
rithms. The detailed proofs for these two corollaries are given
in [31].

Lemma 6: If we define the unique root of Eq. (21) in
variable u∗

t ∈ (bt, ct) as a function of p ∈ P as follows:

u∗
t � Λt(p), (23)

then Λt(p) is strictly decreasing in p ∈ P .
Proof: Proving the monotonicity of Λt(p) is elementary,

and the detailed proof is given in [31].
The intuition of Lemma 6 is as follows: when p is larger,

to achieve the optimal competitive ratio of α∗(S), {Φ∗
t }∀t

tends to become less aggressive by having a smaller {u∗
t}∀t.

In Fig. 1, the monotonicity of Λt(p) means that a larger p
will lift the pricing curve higher (but the lower bound pb

t will
remain unchanged) and thus the optimal dividing threshold u∗

t

shifts towards the left, and vice versa.
If we assume pcut

t satisfies Λt(pcut
t ) = bt+ct

2 , then pcut
t can

be calculated as follows:

pcut
t � Λ−1

t

(bt + ct

2
)

= pc
t +

1 + e2

4
·
(
pc

t − pb
t

)
, (24)

where pcut
t is defined to be a cut-off point for p ∈ P . Since

Λt(p) is strictly decreasing in p ∈ P , we have

• when p = pcut
t , u∗

t = Λt(p) = bt+ct

2 ;
• when p ≥ pcut

t , u∗
t = Λt(p) ∈ (bt,

bt+ct

2 ],
• when p < pcut

t , u∗
t = Λt(p) ∈ ( bt+ct

2 , ct).
Note that based on Eq. (24), pcut

t > pc
t always holds since

ct > bt, or equivalently, pc
t > pb

t .
Based on Theorem 3 and the above analysis, when p ≤

pcut
t holds for all t ∈ T , i.e., when maxt∈T {pc

t} ≤ p ≤
mint∈T {pcut

t }, the optimal competitive ratio α∗(S) = 4
regardless of having exact knowledge of p. This result is,
in our opinion, very counter-intuitive since it has been argued
in many literature (e.g., [32], [35]) that the exact knowl-
edge of such upper bound information is necessary in order
to achieve a bounded competitive ratio. Here our results
show that it is actually not necessary in this scenario. How-
ever, when p ≤ mint∈T {pcut

t } does not hold, the opti-
mal competitive ratio α∗(S) > 4, and it indeed depends
on p.

We note that when p �= pcut
t , calculating the optimal

dividing thresholds {u∗
t = Λt(p)}∀t requires solving the

nonlinear equation (21) for each time slot t ∈ T . However,
this is a lightweight task and can be computed via various
numerical methods such as bisection searching. Moreover,
the computation of {u∗

t }∀t can be performed offline (before
running PPMΦ).

D. Optimal Pricing Functions

In this subsection, we present the optimal pricing functions
{Φ∗

t (y)}∀t that achieve the optimal competitive ratio of α∗(S).
Our optimal pricing function design is based on Theorem 3 and
consists of the following two steps. First, for each given setup
S with p ∈ P , we solve Eq. (21) to get the optimal dividing
threshold u∗

t for each time slot t ∈ T , and then obtain the
optimal competitive ratio parameter αt = Γt(u∗

t ) based on
Eq. (20). Second, we substitute ut = u∗

t and αt = Γt(u∗
t )

into Eq. (19), and then get the optimal pricing function Φ∗
t by

solving the ODEs in Eq. (19) with the boundary conditions
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OC1. Based on Theorem 3, the resulting optimal pricing
functions {Φ∗

t }∀t∈T are guaranteed to satisfy the monotonicity
condition OC2.

Before presenting the specific forms of {Φ∗
t (y)}∀t, we first

give the following lemma and definition.
Lemma 7: Suppose the optimal dividing threshold u∗

t ∈
( bt+ct

2 , ct), then for any y ∈ (bt, u
∗
t ), the following equation

has a unique root in Ht ∈ (y − bt, 2(y − bt)):

2(y − bt)
Ht − 2(y − bt)

− 2(u∗
t − bt)

ct + bt − 2u∗
t

= ln
(Ht − 2(y − bt)

ct + bt − 2u∗
t

)
.

(25)

Proof: The proof is related to Theorem 8 below, and the
details are given in [31].

We define the above one-to-one mapping by Ht(y; u∗
t ),

where y ∈ (bt, u
∗
t ) and u∗

t ∈ ( bt+ct

2 , ct). Below in Definition 1,
we define another similar function Lt(y; u∗

t ) as a function
of y ∈ (u∗

t , ct] for any given optimal dividing threshold
u∗

t ∈ (bt, ct).
Definition 1: Given the optimal dividing threshold u∗

t ∈
(bt, ct), let us define Lt(y; u∗

t ) as a function of y ∈ [u∗
t , ct] by

Lt(y; u∗
t ) �

pc
t − f ′

t(u
∗
t ) −

pc
t−pb

t

Γt(u∗
t )

exp
(Γt(u∗

t )·u∗
t

ct−bt

) · exp
(

Γt(u∗
t ) · y

ct − bt

)

+
pc

t − pb
t

Γt(u∗
t )

. (26)

The above two functions Ht(y; u∗
t ) and Lt(y; u∗

t ) are
defined for the high-risk segment and the low-risk segment,
respectively. We emphasize that both Ht(y; u∗

t ) and Lt(y; u∗
t )

are derived from solving the two ODEs in Eq. (19). Based on
the these two functions, below we present the optimal pricing
scheme Φ = {Φ∗

t (y)}∀t that achieves the optimal competitive
ratio of α∗(S).

Theorem 8 (Optimal Pricing Functions): Given a setup S
with p ∈ P , PPMΦ is α∗(S)-competitive if Φ = {Φ∗

t (y)}∀t,
where Φ∗

t (y) is given as follows:
• Case-1: p ≥ pcut

t . In this case, Φ∗
t (y) is given by:

Φ∗
t (y)=

⎧⎨
⎩

pc
t − pb

t

u∗
t − bt

(y − bt) + pb
t , if y ∈ [bt, u

∗
t ),

f ′
t(y) + Lt(y; u∗

t ), if y ∈ [u∗
t , ct].

(27)

• Case-2: p < pcut
t . In this case, Φ∗

t (y) is given by:

Φ∗
t (y) =

⎧⎪⎪⎨
⎪⎪⎩

pb
t , if y = bt,

f ′
t

(
bt + Ht

(
y; u∗

t

))
, if y ∈ (bt, u

∗
t ),

f ′
t(y) + Lt

(
y; u∗

t

)
, if y ∈ [u∗

t , ct].

(28)

Proof: The functions given by Eq. (27) and Eq. (28)
are derived by solving the two ODEs in Eq. (19) with the
two boundary conditions in OC1. The detailed proof is given
in [31].

We illustrate the optimal pricing functions of both cases
in Fig. 2. As can be seen, Fig. 2(a) shows the optimal pricing
function in Case-1, where u∗

t ∈ (bt,
bt+ct

2 ], and the optimal
pricing function is always linear at the high-risk segment and
grows exponentially fast at the low-risk segment. In this case,
the TE retailer tends to believe that there will be high-VER

Fig. 2. Illustration of the optimal pricing function. Subfigure (a): p ≥ pcut
t

and u∗
t ∈ (bt,

bt+ct
2

]; Subfigure (b): p < pcut
t and u∗

t ∈ ( bt+ct
2

, ct).

customers in the future (since p is large) and thus sets the
price less aggressively. Fig. 2(b) illustrates the optimal pricing
function in Case-2, where u∗

t ∈ ( bt+ct

2 , ct). We can see from
Fig. 2(b) that the optimal pricing function grows slowly at the
high-risk segment (a concave pricing function) since the TE
retailer tends to believe that there is no high-VER customer
in the future (since p is small).

Note that in Case-1, the optimal pricing function is ana-
lytically given by Eq. (27) except the numerical computation
of the optimal dividing threshold u∗

t (which can be computed
offline, as mentioned previously). In comparison, the optimal
pricing function in Case-2 needs some extra computation of
Ht(y; u∗

t ) by solving Eq. (25) numerically for each updated
power consumption level y ∈ (bt, u

∗
t ), and moreover, this

must be performed ‘on-the-fly’ (during the running of PPMΦ).
However, we argue that this should not be a concern for
the online implementation of PPMΦ since the computation
is lightweight. Moreover, for each customer n, we just need
to solve Eq. (25) for the time slots whose total power
consumption levels have been updated (i.e., the time slots
within Tn).

IV. CASE STUDIES

In this section, we evaluate PPMΦ based on extensive
experimental simulations. We start by introducing the setup
of our experiments, and then describe the detailed numerical
results and insights.

A. Experimental Setup

We validate the performance of PPMΦ through the case of
EV charging. We use a set of driving traces for GPS-equipped
taxi vehicles from [36] to construct a market-based online EV
charging setting. The detailed experimental setup is as follows.
We simulate over a horizon of 24 hours with ΔT = 1/2 hour
per time slot. Therefore, we have T = 48 time slots in total.
The base load {bt}∀t in our simulation is the real-world load
data from NYISO8 and varies within 1300 kW and 1650 kW.
The capacity limit is set to be ct = 1.7 × 103 kW for
all time slots unless otherwise specified, and thus we may
refer to the capacity limit by c without the time index. The

8https://www.nyiso.com/load-data
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cost coefficients of ft(·), namely at,2, at,1 and at,0, are also
assumed to be time-invariant, and thus we drop the time index
and assume a2 = 10−4 $/kWh/kW, a1 = 10−4 $/kWh, and
a0 = 0. By this setup, the marginal cost is around 0.26 ∼ 0.34
$/kWh within the available capacity.

1) Real-World Trace Setup: We consider a group of N =
1000 EVs, and for each EV n, we consider its arrival and
departure times are randomly drawn from the real-world traces
of GPS-equipped taxi vehicles [36]. The charging power rt

n

for customer n is assumed to be time invariant (i.e., the ideal
charging process), and thus we drop the time index and assume
rn is randomly drawn from [3.7, 7, 22] kW, which are typical
charging rates of Tesla Model S.9 The total energy demand
of customer n is given by en = |Tn| · rnΔT , where |Tn| is
the charging duration of customer n. Based on the energy
demand en of customer n, the valuation vn is given by vn =
ξnen, where ξn is the VER of EV n. In our simulation, ξn is
randomly drawn from a truncated Gaussian distribution with
mean μ, variance σ, lower bound lb and upper bound ub,
as follows:

ξn ∼ TruncGaussian(μ, σ, lb, ub).

Since the average marginal cost is around 0.3, a reasonable
setup should have μ ≥ 0.3. Therefore, throughout our simula-
tion, μ is drawn from [0.3, 0.7] and σ varies within [0.01, 2].
Meanwhile, we set lb = 0.2 and ub = 1 for all the time unless
otherwise specified. For this case, we assume the upper bound
p = maxn{ξn} = ub = 1.

2) Extreme-Case Setup: Other than generating the VERs
of all the EVs by the aforementioned truncated Gaussian dis-
tribution, we also artificially construct the following extreme
cases to test the performance and robustness of our proposed
online mechanism. Moreover, we are interested in understand-
ing whether the value of p influences the performance and
robustness of PPMΦ since it plays a critical role in our pricing
function design. The extreme cases are constructed as follows:
First, we consider the same setting of EVs as the above
Real-World Trace Setup in terms of N and {en, rn, Tn}∀n,
but the VERs are generated in the following three extreme
cases:

• High-Low Case. This is the case where the VERs
{ξn}∀n of the first 500 customers are generated
with (μ, σ, lb, ub) = (0.7, 0.1, 0.6, 1), and the sec-
ond 500 customers are generated with (μ, σ, lb, ub) =
(0.3, 0.1, 0.2, 0.5). Therefore, the first-half customers
have high VERs while the second-half have low VERs.

• Constant Case. This is the case where the VERs {ξn}∀n

are generated with (μ, σ, lb, ub) = (0.5, 0, 0.5, 0.5) for all
1000 customers, namely, ξn = 0.5 for all n ∈ N .

• Low-High Case. This is the case where the VERs of all
the customers are constructed in the opposite way to the
above High-Low Case.

Third, for all the three extreme cases, we assume p is drawn
from {3, 4, 5, 6, 7}. Note that in the High-Low Case and Low-
High Case, we have maxn{ξn} = 1, and in the Constant
Case, we have maxn{ξn} = 0.5. Thus, our setup of p =

9https://pod-point.com/landing-pages/tesla-charging

Fig. 3. Empirical ratios of different online mechanisms w.r.t. σ ∈ [0.1, 2]
under different settings of μ = 0.3, 0.5, 0.7. Each point in the figure is an
average of 1000 evaluations.

{3, 4, 5, 6, 7} is feasible since maxn{ξn} ≤ p always holds.
The purpose of setting p and ξn in such a way is to evaluate the
performances of PPMΦ when p deviates from the exact value
of maxn{ξn}. In reality, this can simulate the robustness of
our proposed pricing mechanism when there exist estimation
errors of p.

B. Benchmarks

We benchmark PPMΦ based on the offline optimal result
by assuming complete knowledge of future information. The
offline problem (2) is solved by Gurobi 8.1 via its Python
API.10 To compare the performance of different pricing
schemes, we define the empirical ratio of an online mechanism
by

Empirical Ratio � Wopt
/
Wonline.

In the following figures, the results of our proposed PPMΦ

with the optimal pricing scheme Φ = {Φ∗
t }∀t are simply

marked as PPM, to differentiate it from the results by Linear,
Greedy and Offline. Next we present our numerical results
based on the above setup.

C. Numerical Results

1) Results Based on Real-World Trace Setup: We first show
the performances of PPMΦ based on the real-world trace
setup and present our results in Fig. 3-Fig. 5. As shown
in Fig. 3, PPMΦ shows a very competitive performance w.r.t.
the changes of μ and σ. In most cases, the empirical ratios of
PPMΦ are below 2, and are very robust w.r.t. the changes
of μ and σ. Among the three online mechanisms, Linear
performs the worst, and even the best empirical ratio of Linear
is still larger than 8. Note that although the pricing function
of Linear shares the same lower and upper bounds of our
proposed pricing function in PPMΦ, these two mechanisms
result in totally different empirical ratios. The big performance
difference between PPMΦ and Linear demonstrates the effec-
tiveness of our optimal pricing function design.

Fig. 3 also reveals some interesting results regarding
Greedy and Linear. When the VERs of customers are less
volatile, i.e., a smaller σ, Greedy depicts approximately the

10http://www.gurobi.com/index
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Fig. 4. Total power consumption profiles under different mechanisms with
arrivals occur within [0,20] and [0,6]. In both figures, (μ, σ) = (0.7, 1).

Fig. 5. Impact of the number of customers N and the total capacity c on the
performances of online mechanisms. Each point in the figure is an average
of 1000 evaluations. For all the three figures, (β, σ) = (0.5, 1).

same performance as PPMΦ, as shown in all the three subfig-
ures in Fig. 3 when σ = 0.01. This is not a surprising result
since when σ is extremely small, all the customers are similar
in terms of VERs, and thus a myopic pricing scheme performs
good enough since the future arrivals will be almost the same
as the current one. When σ increases (i.e., the valuations
become more volatile), the empirical ratio of Linear always
improves until becomes stable around 8, regardless of the
values of μ. However, Greedy in general performs worse w.r.t.
the increasing of σ. In particular, Fig. 3(a) shows that when
μ is small, Greedy first starts to perform worse and then
performs better until its empirical ratios become stable around
3. However, Fig. 3(c) shows that when μ is large, Greedy
always performs worse when σ increases and then becomes
stable. Therefore, both Linear and Greedy are sensitive to the
mean and variance of VERs, while PPMΦ are not.

To better illustrate the difference among all the mechanisms,
we plot one instance of the total power consumption profiles
in Fig. 4 when EV arrivals occur within [0, 20] and [0, 6].
Among all the mechanisms, Greedy always has the quickest
depletion of the available capacity. In contrast, Linear con-
sumes the least power since most customers cannot afford the
price posted by Linear. In between, PPMΦ achieves a good
balance between aggressiveness and conservativeness, leading
to a good performance in empirical ratios. Note that for both
figures in Fig. 4, Greedy and Offline both deplete the whole
available capacity, while PPMΦ tends to reserve some capacity
for future use. This is the key smartness of PPMΦ since it
avoids the cases when high-VER customers who come at a
latter stage cannot consume any energy due to the capacity
limit.

Fig. 5 shows our results regarding whether the system scale
(i.e., the number of customers N ) and the available capacity

(i.e., c − bt) will influence the performance of our proposed
online mechanisms. We vary N from 200 to 1000 and plot the
empirical ratios of three online mechanisms when the capacity
limit is c = 1650 (scarce), 2000, 2400, 2800 (sufficient).
We can see that the empirical ratios of all the three mech-
anisms become smaller when the available capacity becomes
more sufficient. Meanwhile, Greedy tends to have a similar
performance as PPMΦ when the available capacity is suffi-
cient, but both Greedy and Linear have a poor performance
when the available capacity is very limited, as can be seen
in Fig. 5(a). The results in Fig. 5 is intuitive since a more
limited available capacity indicates a more difficult and risky
online decision-making, as every inappropriate decision made
now (e.g., prices are set too cheap) might have no remedy in
the future. Fig. 5 demonstrates that our proposed PPMΦ has a
very competitive performance even if the available capacity is
very limited (Fig. 5(a)). Moreover, the performance of PPMΦ

is very robust when the number of customers increases, and
thus is amenable for large-scale systems.

2) Results Based on Extreme-Case Setup: We next present
the performance of PPMΦ based on the extreme-case setup
in Fig. 6. As mentioned earlier in this section, we plot the
empirical ratios of three online mechanisms w.r.t. the values of
p in the following three extreme cases: High-Low Case, Con-
stant Case, and Low-High Case. Fig. 6(a) shows that PPMΦ

achieves an empirical ratio around 1.5 ∼ 1.7 in the High-
Low Case. Meanwhile, the other two online mechanisms
also achieve a decent performance. For example, the empirical
ratios of Greedy are smaller than 2. This should be expected
since the High-Low Case is easy in terms of online decision-
making. Fig. 6(b) shows the performance of three online
mechanisms in a relatively more difficult Constant Case.
As shown in Fig. 6(b), when the VERs of all customers are
constant, both Greedy and PPMΦ have a similar performance,
while Linear performs much worse than Greedy and PPMΦ.
A similar performance between Greedy and PPMΦ in the
Constant Case is consistent with our results in Fig. 3 when σ
is extremely small (e.g., σ = 0.01). Among the three extreme
cases, the Low-High Case is the most difficult case since it is
likely to deplete too much available capacity at the earlier stage
and thus latter high-VER customers cannot make any purchase
due to the capacity limit. However, kind of surprisingly,
as shown in Fig. 6(c), PPMΦ still demonstrates a relatively
competitive results (the empirical ratios are below 3 for most
of the cases). As can be expected, Greedy fails to reserve
enough capacity for future high-VER customers, leading to
a very poor performance in the Low-High Case. Fig. 6(c)
also shows that Linear performs better than Greedy when p
is small. This follows the intuition since it is reasonable to
price as conservative as Linear in the Low-High Case for
the purpose of future high-VER customers. However, a larger
p will make Linear excessively conservative, and thus Linear
performs even worse than Greedy when p is larger than 6.

In summary, from Fig. 6(a) to Fig. 6(c), the difficulty of
online decision-making is increasing, and thus all the three
online mechanisms shows a certain degree of performance
degradation. However, Fig. 6 shows that PPMΦ achieves a
very stable performance w.r.t. p. We argue that this is kind
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Fig. 6. Empirical ratios of different online mechanisms under three extreme
cases. Each point in the figure is an average of 1000 evaluations.

of counter-intuitive, since p is the upper bound of Φ∗
t (y)

and directly influences the calculation of the optimal dividing
threshold u∗

t . Thus, p is supposed to play a critical role in
determining the final curvature of Φ∗

t (y). However, unlike
Linear, the performance of PPMΦ is not sensitive to the
changes of p. Note that our previous theoretic analyses provide
no such guarantee, and thus we consider this is another
advantage of our pricing function design.

V. CONCLUSION

In this paper, we proposed a theoretic framework to study
a general TE retailing problem in smart grid. In our studied
problem, the TE retailer sells energy to customers that arrive
in an arbitrary manner and may choose to purchase a certain
amount of TE based on the current posted prices, or leave with-
out buying anything. We proposed an optimal posted-pricing
mechanism (PPM) for TE retailing without assuming any
knowledge of future arrival information. Our proposed PPM
is optimal in the sense that no other online mechanisms can
achieve a better competitive ratio, and consequently, no other
online algorithms can achieve a better performance in expec-
tation. We evaluated the proposed online mechanism in the
setting of online EV charging. Extensive experimental results
show that our proposed PPM achieves a very competitive
empirical result compared to its offline counterpart. Mean-
while, our proposed PPM is robust against system uncertainties
and outperforms several existing benchmarks.
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